STAAR GEOMETRY REFERENCE MATERIALS

CIRCUMFERENCE			
Circle	$C = 2\pi r$	or	$C = \pi d$
AREA			
Triangle			$A = \frac{1}{2}bh$
Rectangle or parallelogram			A = bh
Rhombus			$A = \frac{1}{2}d_1d_2$
Trapezoid			$A = \frac{1}{2}(b_1 + b_2)h$
Regular polygon			$A=\frac{1}{2}aP$
Circle			$A = \pi r^2$
SURFACE AREA			
	Lateral		Total
	Laterai		Iotai
Prism	S = Ph		S = Ph + 2B
Prism Pyramid			
	S = Ph		S = Ph + 2B
Pyramid	$S = Ph$ $S = \frac{1}{2}Pl$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$
Pyramid Cylinder	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$
Pyramid Cylinder Cone	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Pyramid Cylinder Cone Sphere	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Pyramid Cylinder Cone Sphere VOLUME	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$ $S = 4\pi r^{2}$

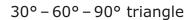
STAAR GEOMETRY REFERENCE MATERIALS

В

С

45° – 45° – 90° triangle

 $a^2 + b^2 = c^2$


Α

COORDINATE GEOMETRY	
Midpoint	$\left(\frac{X_1 + X_2}{2}, \frac{Y_1 + Y_2}{2}\right)$
Distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Slope of a line	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Slope-intercept form of a linear equation	y = mx + b
Point-slope form of a linear equation	$y - y_1 = m(x - x_1)$
Standard form of a linear equation	Ax + By = C
RIGHT TRIANGLES	

Pythagorean theorem

Trigonometric ratios

 $\sin A = \frac{\text{opposite leg}}{\text{hypotenuse}}$ $\cos A = \frac{\text{adjacent leg}}{\text{hypotenuse}}$ $\tan A = \frac{\text{opposite leg}}{\text{adjacent leg}}$

Copyright © 2011, Texas Education Agency. All rights reserved.